The University of Jordan Chemical Engineering Department Chemical Reaction Engineering 1 Fall 2023

Instructors: Reyad A. Shawabkeh

Course Description:

Kinetics of homogeneous reactions, rate equations and conservations equation applied to homogeneous reaction, design of isothermal reactors (batch, CSTR, and plug flow), single and multiple ideal reactors, non-catalytic packed bed reactors, choice of reactor for various reactions. Non-elementary homogeneous reactions, yield and selectivity for isothermal reactors with multiple reactions. Collection and analysis of reaction rate data. Non-isothermal reactions. Stability of CSTR's.

Prerequisites: Numerical Methods in Chemical Engineering (0935301) Chemical Engineering Thermodynamics-II (0905322)

Course Objectives:

- 1. Provide a core foundation for the analysis and design of chemical reactors.
- 2. Provide instruction in the analysis of experimental data to obtain rate equations and kinetic and thermodynamic data.
- 3. Provide instruction in the formulation of reaction engineering analysis and design problems and their solution using mathematical analysis, computer tools, and engineering judgment.

Course Outcomes:

By the end of the course, you will be able to:

OBJECTIVE 1

- 1. Understand the performance characteristics and the advantages and disadvantages of major reactor types (O1)
- 2. Set up material and energy balances and identify known and unknowns (O1).
- 3. Make comparisons of ideal reactor types (batch, plug flow, mixed flow, etc.) and
- 4. Be able to determine the best choice for simple objectives when using a single reactor or a set of reactors (O1).

OBJECTIVE 2

Analyze experimental data to obtain rate equations and kinetic and thermodynamic data: Develop reaction mechanism and rate laws (reaction order and specific reaction rate that are consistent with experimental data) for use in reactor design based on reaction data from a reactor or set of reactors (O1).

OBJECTIVE 3

- 1. Describe the algorithm that allows the student to solve chemical reaction engineering problems through logic rather than memorization (O1).
- 2. Predict reactor performance in situations where a reacting gas has a significantly changing density, including the case of variable pressure within an ideal plug flow reactor.
- 3. Identify design alternatives and evaluate these alternatives (O1, O2).
- 4. Determine optimal ideal reactor design for multiple reactions for yield or selectivity (O1, O2).
- 5. Predict reactor performance for reactors when the temperature is not uniform within the (O1, O2).
- 6. Analyze multiple reactions carried out non-isothermally in flow, batch and semi batch reactors to determine selectivity and yield (O1, O2).
- 7. Transform calculation problems in chemical reaction engineering into mathematical models and, if necessary, choose a numerical method for solving those models and, if necessary, choose suitable ready-made software and carry out the calculations on a computer (O1, O2).

Topics covered:

Content	Text book	Week	Outcomes
1. Introduction: reaction rate, reactor molar balances, conversion	Chapter 1	1	1, 2, 3
2. Conversion and Reactor Sizing: Design Equations: Batch Reactor, CSTR, PFR, Applications for Continuous-Flow Reactors, Reactors in Series CSTRs in Series, PFRs in Series, Combinations of CSTRs and PFRs in Series	Chapter 2	2+3	1, 6, 8, 11
3. Rate Laws and Stoichiometry: Relative Rates of Reaction, The Reaction Order and the Rate Law, Power Law Models and Elementary Rate Laws, Nonelementary Rate Laws, Reversible Reaction, Reaction Rate Constant, Activation Energy, Stoichiometry	Chapter 3 + Chapter 4+	4+5	1, 2, 3
 Isothermal Reactor Design: Batch Reactor, Design of CSTR Reactors, Single CSTR, CSTR's in Series, CSTR's in Parallel, Design of PFR Reactors, Flow Through a Packed Bed. 	Chapter 5 + Chapter 6	6+7	1, 5-8 and 11
5. Analysis of Data: The Algorithm for Data Analysis, Batch Reactor Data, Finding theRate Law Parameters	Chapter 7	8	4

6. Multiple Reactions: Types of Reactions,	Chapter 8	9+10	8
Selectivity, Reaction Yield, Parallel			
Reactions, Series Reactions, Net Rates of			
Reaction, Complex Reactions in PFR and CSTR.			
7. Steady State non-isothermal Reactor Design:	Chapter 11 +	11+13	9, 10, 11
First Law of Thermodynamics, Heat of	Chapter 12		
Reaction, Dissecting the Enthalpies, Adiabatic			
Operation, Tubular Reactor with Heat			
Exchange, Equilibrium Conversion,			
CSTR with Heat Effects			
8. Multiple Steady States, Non-isothermal	Chapter 12	14 + 15	9, 10, 11
Multiple Chemical Reactions			
		16	
Final Exam			

Relationship to Program outcome:

NEW ABET	1	2	3	4	5	6	7
1 -7	Х	Х					

Relationship to CHE Program Objectives:

PEO1	PEO 2	PEO 3	PEO 4
Х	Х	х	х

Textbook:	Fogler, H. S., "Elements of Chemical Reaction Engineering", 5 th ed., Prentice Hall (2005).
Key Reference:	 Levenspiel, O., "Chemical Reaction Engineering", 3rd ed., John Wiley & Sons (1999). James B. Rawlinga and John G. Ekerdt, Chemical Reactor analysis and Design Fundamentals, 7th Edition, Nob Hill Publishing, Madison, USA, 2002 Cutlip & Shacham, Problem Solving in Chemical and Biochemical Engineering with POLYMATH, Excel, and MATLAB, 2nd Edition 2008
Grading:	Homework and Quizzes (20%) Mid-Term exam: Tuesday, November 28, 2023 (30%) Final exam (50%)

Communication: E-learning Portal is used in this course.